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Motivation: Elekes’ covering theorem

Theorem (M. Elekes)

Let (X ,A, µ) be a σ-finite measure space and let (An)n∈ω ∈ Aω
be a µ-a.e. infinite-fold cover of X , that is,{

x ∈ X : {n ∈ ω : x ∈ An} is finite
}

has (µ-)measure 0.

Then there exists a set S ⊆ ω such that limn→∞
|S∩n|

n = 0 and
(An)n∈S is also a µ-a.e. infinite-fold cover of X .

Proof: Fubini’s theorem, Borel-Cantelli lemma etc.

Question (Elekes)
Possible generalizations? Applications?
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The J -covering property

Definition
Let I ⊆ P(X ) be an ideal. We say that a sequence (An)n∈ω of
subsets of X is an I-a.e. infinite-fold cover (of X) if{

x ∈ X : {n ∈ ω : x ∈ An} is finite
}
∈ I , i.e. lim sup

n∈ω
An ∈ I∗.

Definition
Let A, I ⊆ P(X ) be a σ-algebra and an ideal, and let J ⊆ P(ω)
be an ideal. We say that the pair

(A, I) has the J -covering property

if for every I-a.e. infinite-fold cover (An)n∈ω ∈ Aω, there is an
S ∈ J such that (An)n∈S is also an I-a.e. infinite-fold cover.
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Remarks on the definition

(A, I) has the J -covering property:

IF (An)n∈ω ∈ Aω is an (I-a.e.) infinite-fold cover,
THEN ∃ S ∈ J (An)n∈S is also an I-a.e. infinite-fold cover.

Remarks
(1) Elekes’ theorem in this context: If (X ,A, µ) is a σ-finite

measure space, then (A,Null(µ)) has the Z-covering
property where Z = {S ⊆ ω : limn→∞

|S∩n|
n = 0} is the

density zero ideal (a tall Fσδ P-ideal).
(2) If J is not tall (i.e. there is an H ∈ [ω]ω s.t. J � H = [H]<ω),

then there is no (A, I) with the J -covering property.
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THEN ∃ S ∈ J (An)n∈S is also an I-a.e. infinite-fold cover.

Remarks
(3) If (A, I) has the J -covering property, then (A[I], I) also has

this property where A[I] is the “I-completion of A”, that is

A[I] =
{

B ⊆ X : ∃ A ∈ A A4B ∈ I
}
.

(4) If (A, I) has the J -covering property, then for all Y ∈ A \ I
the pair (A � Y , I � Y ) also has this property.
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property, then (A, I2) also has the J -covering property.

(6) If (A, I) has the J0-covering property and J0 ≤KB J1, i.e.

∃ f : ω
fin-to-one−−−−−→ ω ∀ S ∈ J0 f−1[S] ∈ J1,

then (A, I) has the J1-covering property as well.



Motivation Examples and the category case A strong negative result

Remarks on the definition

(A, I) has the J -covering property:

IF (An)n∈ω ∈ Aω is an (I-a.e.) infinite-fold cover,
THEN ∃ S ∈ J (An)n∈S is also an I-a.e. infinite-fold cover.

Remarks
(5) If I1 ⊆ I2 are ideals on X and (A, I1) has the J -covering

property, then (A, I2) also has the J -covering property.
(6) If (A, I) has the J0-covering property and J0 ≤KB J1, i.e.

∃ f : ω
fin-to-one−−−−−→ ω ∀ S ∈ J0 f−1[S] ∈ J1,

then (A, I) has the J1-covering property as well.



Motivation Examples and the category case A strong negative result

Analytic uniformity

(A, I) has the J -covering property:

IF (An)n∈ω ∈ Aω is an (I-a.e.) infinite-fold cover,
THEN ∃ S ∈ J (An)n∈S is also an I-a.e. infinite-fold cover.

Reformulation: (A, I) has the J -covering property iff

for every (A,Borel([ω]ω))-measurable F : X → [ω]ω, there is an
S ∈ J such that {x ∈ X : |F (x) ∩ S| = ω} ∈ I∗.

The case I = {∅} ∼ star-uniformity of J
(P(X ), {∅}) has the J -covering property iff |X | < non∗(J )
where non∗(J ) =

min
{
|H| : H ⊆ [ω]ω and @ A ∈ J ∀ H ∈ H |A ∩ H| = ω}.
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Notation
If A is clear from the context (usually it will be the Borel
σ-algebra on a Polish space), then we will simply write:

I has the J -covering property.
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Covering property vs. forcing indestructibility

Assume that J is a tall ideal on ω and P is a forcing notion. We
say that J is P-indestructible if the ideal in VP generated by J
is tall, i.e. P ∀ H ∈ [ω]ω ∩ VP ∃ S ∈ J (∩V ) |H ∩ S| = ω.

Theorem
Let X be a Polish space, I a σ-ideal on X , and assume that the
forcing notion PI = Borel(X ) \ I is proper. Then

I has the J -covering property⇒ J is PI-indestructible.

Proof: Assume on the contrary that there is a PI-name Ẏ s.t.
PI Ẏ ∈ [ω]ω and B PI ∀ A ∈ J |Ẏ ∩ A| < ω for some B ∈ PI .
Then (by properness) there are a C ∈ PI , C ⊆ B, and a Borel
function f : C → [ω]ω (coded in V ) such that C PI f (ṙgen) = Ẏ .
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Covering property vs. forcing indestructibility

Theorem
Let X be a Polish space, I a σ-ideal on X , and assume that the
forcing notion PI = Borel(X ) \ I is proper. If (Borel(X ), I) has the
J -covering property, then J is PI-indestructible.

Proof (continued): For each n ∈ ω let

Yn = f−1[{S ∈ [ω]ω : n ∈ S}
]
∈ Borel(X ).

Then (Yn)n∈ω is an infinite-fold cover of C: x ∈ Yn ⇔ n ∈ f (x).
I � C has the J -covering property so there is an A ∈ J such
that (Yn)n∈A is an I-a.e. infinite-fold cover of C, that is,
{x ∈ C : |f (x) ∩ A| < ω} ∈ I. In the forcing language, it means
that C PI |Ẏ ∩ A| = |f (ṙgen) ∩ A| = ω, a contradiction.
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Counterexamples: I = NWD and I = Kσ

Proposition
Assume I is one of the following ideals on X = ωω:

I = NWD is the ideal of nowhere dense subsets of ωω;
I = Kσ is the σ-ideal (σ-)generated by compact sets, in
other words, Kσ = 〈{g ∈ ωω : g ≤∗ f} : f ∈ ωω〉id where
g ≤∗ f iff ∀∞ n g(n) ≤ f (n).

Then I does not have the J -covering property for any J .

Proof: Consider the following infinite-fold cover of ωω:

An = {f ∈ ωω : f (n) 6= 0} ∪ {g ∈ ωω : ∀∞ n g(n) = 0}.

If S, ω \S ∈ [ω]ω, then ωω \ lim supn∈S An = lim infn∈S(ωω \An) =
{f ∈ ωω : ∀∞ n ∈ S f (n) = 0} is dense and not in Kσ.
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A strong counterexample: I = N and J = I1/n

The summable ideal

I1/n =

{
A ⊆ ω :

∑
n∈A

1
n + 1

<∞

}
Clearly, I1/n ( Z and I1/n is a tall Fσ P-ideal.

Proposition

The ideal N of subsets of [0,1] with measure 0 does not have
the I1/n-covering property.

Proof: Let (An = [an,bn])n∈ω be an infinite-fold cover where
bn − an = 1

n+1 . If S ∈ I1/n, then
∑

n∈S λ(An) <∞, in particular
λ(lim supn∈S An) = 0 (by the Borel-Cantelli lemma).
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EDfin in the Katětov-Blass order

ED and EDfin

ED =

{
A ⊆ ω × ω : lim sup

n∈ω
|(A)n| <∞

}
where (A)n = {m ∈ ω : (n,m) ∈ A} and EDfin = ED � ∆ where
∆ = {(n,m) ∈ ω × ω : m ≤ n}. ED and EDfin are tall Fσ non
P-ideals.

Proposition
EDfin ≤KB J for each tall analytic P-ideal J .

Proof: Use Solecki’s representation theorem: J = Exh(ϕ) for
some lower semicontinuous submeasure ϕ on ω, and because
of tallness we have limn→∞ ϕ({n}) = 0.
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The category case

Theorem
The idealM(X ) of meager subsets of any Polish space X has
the EDfin-covering property.

Proof: Let (A(n,m))(n,m)∈∆ be an infinite-fold Borel cover of X .
W.l.o.g., we can assume that all A(n,m)’s are open.
Enumerate {Uk : k ∈ ω} a base of X . By recursion on k we will
define a sequence (nk ,mk )k∈ω ∈ ∆ω:

(n0,m0) ∈ ∆ such that A(n0,m0) ∩ U0 6= ∅.
If (ni ,mi) are done for i < k , then choose an (nk ,mk ) ∈ ∆
such that nk 6= ni for i < k and A(nk ,mk ) ∩ Uk 6= ∅.

Finally, let S = {(nk ,mk ) : k ∈ ω} ∈ EDfin.
For every k ∈ ω, the set

⋃
i≥k A(ni ,mi ) is dense and open.

Consequently, lim sup(n,m)∈S A(n,m) =
⋂

k∈ω
⋃

i≥k A(ni ,mi ) is a
dense Gδ set, hence it is residual (i.e. co-meager).
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More on the category case

Corollary

If EDfin ≤KB J , thenM =M(2ω) has the J -covering property,
and hence J is Cohen-indestructible.

Question
(1) Assume J is Cohen-indestructible. Does it imply thatM

has the J -covering property?
(2) AssumeM has the J -covering property. Does it imply that
EDfin ≤KB J ?

Answer for Question (1): No

The ideal Fin⊗ Fin = {A ⊆ ω × ω : ∀∞ n ∈ ω |(A)n| < ω} (a tall
Fσδσ non P-ideal) and ED are Cohen-indestructible butM does
not have the Fin⊗ Fin- or the ED-covering properties.
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More on the category case

Question (2):
AssumeM has the J -covering property. Does it imply that
EDfin ≤KB J ?

Answer for Question (2): No

(a) If t = c and |A| ≤ c then there is no Katětov-Blass-smallest
element of the family {J : (A, I) has the J -covering
property}. (Proof: usual construction by recursion.)

(b) After adding ω1 Cohen-reals there is an ideal J such that
EDfin �KB J (in particular, Z �KB J ) but N andM have
the J -covering property. (Proof: consider the ideal
generated by the generic Cohen-reals.)
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Some related questions

Question
Do there exist (analytic) (P-)ideals J0 and J1 in ZFC such that
(1) Z �KB J0 but N has the J0-covering property? (Yes (by

Sz. Gła̧b), there is such a Borel non P-ideal.)
(2) EDfin �KB J1 butM has the J1-covering property?

Question
Do there exist Katětov-Blass-smallest ideals in the following
families:
(1) the family of all analytic (or Borel) ideals J such that N

has the J -covering property?
(2) the family of all analytic (or Borel) ideals J such thatM

has the J -covering property?
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Do there exist Katětov-Blass-smallest ideals in the following
families:
(1) the family of all analytic (or Borel) ideals J such that N

has the J -covering property?

(2) the family of all analytic (or Borel) ideals J such thatM
has the J -covering property?



Motivation Examples and the category case A strong negative result

Some related questions

Question
Do there exist (analytic) (P-)ideals J0 and J1 in ZFC such that
(1) Z �KB J0 but N has the J0-covering property? (Yes (by

Sz. Gła̧b), there is such a Borel non P-ideal.)
(2) EDfin �KB J1 butM has the J1-covering property?

Question
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When the J -covering property strongly fails

Question
Assume X is a Polish space, I is an ideal on X , and I does not
have the J -covering property: there is an infinite-fold Borel
cover (An)n∈ω such that lim supn∈S An /∈ I∗ for each S ∈ J .
Does it imply that the J -covering property strongly fails? Does
there exist an infinite-fold Borel cover (An)n∈ω of X such that
lim supn∈S An ∈ I for each S ∈ J ?

Answer: No
Consider X = R and let

I =
{

A ⊆ R : A ∩ (−∞,0] is meager and A ∩ [0,∞) is null
}

.

Then I does not have the I1/n-covering property but for each
infinite-fold Borel cover (An)n∈ω of X , there is an S ∈ I1/n such
that lim supn∈S An ∈M((−∞,0])∗ ⊆ I+(= P(R) \ I).
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Assume I is translation invariant. . .

Theorem
Assume G is a Polish group, D ⊆ G is countable and dense, I is
a translation invariant ccc σ-ideal on G fulfilling the condition

∀ X ∈ Borel(G) \ I D + X ∈ I∗.

Assume furthermore that J is a P-ideal and I does not have the
J -covering property. Then there is an infinite-fold Borel cover
(An)n∈ω of G such that lim supn∈S An ∈ I for each S ∈ J .

Remark
M, N ,M⊗N and N ⊗M satisfy the conditions of the
theorem with any countable dense subsets of R (resp. R2).
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Thank you!
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