< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

# Covering properties of ideals

### Barnabás Farkas<sup>1</sup>

joint work with

### Marek Balcerzak<sup>2</sup> and Szymon Głąb<sup>2</sup>

### Hejnice 2012

<sup>1</sup>Budapest University of Technology, <sup>2</sup>Technical University of Łódź

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation ••••••• Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

## Motivation: Elekes' covering theorem

# Motivation: Elekes' covering theorem

#### Theorem (M. Elekes)

Let  $(X, \mathcal{A}, \mu)$  be a  $\sigma$ -finite measure space and let  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  be a  $\mu$ -a.e. infinite-fold cover of X, that is,

 $\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite} \}$  has ( $\mu$ -)measure 0.

# Motivation: Elekes' covering theorem

#### Theorem (M. Elekes)

Let  $(X, \mathcal{A}, \mu)$  be a  $\sigma$ -finite measure space and let  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  be a  $\mu$ -a.e. infinite-fold cover of X, that is,

 $\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite} \}$  has ( $\mu$ -)measure 0.

Then there exists a set  $S \subseteq \omega$  such that  $\lim_{n\to\infty} \frac{|S\cap n|}{n} = 0$  and  $(A_n)_{n\in S}$  is also a  $\mu$ -a.e. infinite-fold cover of X.

(日) (日) (日) (日) (日) (日) (日)

# Motivation: Elekes' covering theorem

#### Theorem (M. Elekes)

Let  $(X, \mathcal{A}, \mu)$  be a  $\sigma$ -finite measure space and let  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  be a  $\mu$ -a.e. infinite-fold cover of X, that is,

 $\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite} \}$  has ( $\mu$ -)measure 0.

Then there exists a set  $S \subseteq \omega$  such that  $\lim_{n\to\infty} \frac{|S\cap n|}{n} = 0$  and  $(A_n)_{n\in S}$  is also a  $\mu$ -a.e. infinite-fold cover of X.

Proof: Fubini's theorem, Borel-Cantelli lemma etc.

# Motivation: Elekes' covering theorem

#### Theorem (M. Elekes)

Let  $(X, \mathcal{A}, \mu)$  be a  $\sigma$ -finite measure space and let  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  be a  $\mu$ -a.e. infinite-fold cover of X, that is,

 $\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite} \}$  has ( $\mu$ -)measure 0.

Then there exists a set  $S \subseteq \omega$  such that  $\lim_{n\to\infty} \frac{|S\cap n|}{n} = 0$  and  $(A_n)_{n\in S}$  is also a  $\mu$ -a.e. infinite-fold cover of X.

Proof: Fubini's theorem, Borel-Cantelli lemma etc.

### Question (Elekes)

Possible generalizations? Applications?

Motivation •••••••

Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

## The $\overline{\mathcal{J}}$ -covering property

A strong negative result 00

# The $\mathcal{J}$ -covering property

#### Definition

Let  $I \subseteq \mathcal{P}(X)$  be an ideal. We say that a sequence  $(A_n)_{n \in \omega}$  of subsets of X is an *l-a.e. infinite-fold cover* (of X) if



A strong negative result 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

# The $\mathcal{J}$ -covering property

#### Definition

Let  $I \subseteq \mathcal{P}(X)$  be an ideal. We say that a sequence  $(A_n)_{n \in \omega}$  of subsets of X is an *l-a.e. infinite-fold cover* (of X) if

$$\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite}\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

A strong negative result 00

# The $\mathcal{J}$ -covering property

#### Definition

Let  $I \subseteq \mathcal{P}(X)$  be an ideal. We say that a sequence  $(A_n)_{n \in \omega}$  of subsets of X is an *l-a.e. infinite-fold cover* (of X) if

$$\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite}\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

#### Definition

Let  $\mathcal{A}, I \subseteq \mathcal{P}(X)$  be a  $\sigma$ -algebra and an ideal, and let  $\mathcal{J} \subseteq \mathcal{P}(\omega)$  be an ideal.

A strong negative result

# The $\mathcal{J}$ -covering property

#### Definition

Let  $I \subseteq \mathcal{P}(X)$  be an ideal. We say that a sequence  $(A_n)_{n \in \omega}$  of subsets of X is an *l-a.e. infinite-fold cover* (of X) if

$$\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite}\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

#### Definition

Let  $\mathcal{A}, I \subseteq \mathcal{P}(X)$  be a  $\sigma$ -algebra and an ideal, and let  $\mathcal{J} \subseteq \mathcal{P}(\omega)$  be an ideal. We say that the pair

 $(\mathcal{A}, I)$  has the  $\mathcal{J}$ -covering property

A strong negative result

# The $\mathcal{J}$ -covering property

#### Definition

Let  $I \subseteq \mathcal{P}(X)$  be an ideal. We say that a sequence  $(A_n)_{n \in \omega}$  of subsets of X is an *l-a.e. infinite-fold cover* (of X) if

$$\{x \in X : \{n \in \omega : x \in A_n\} \text{ is finite}\} \in I, \text{ i.e. } \limsup_{n \in \omega} A_n \in I^*.$$

#### Definition

Let  $\mathcal{A}, I \subseteq \mathcal{P}(X)$  be a  $\sigma$ -algebra and an ideal, and let  $\mathcal{J} \subseteq \mathcal{P}(\omega)$  be an ideal. We say that the pair

 $(\mathcal{A}, I)$  has the  $\mathcal{J}$ -covering property

if for every *I*-a.e. infinite-fold cover  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$ , there is an  $S \in \mathcal{J}$  such that  $(A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

A strong negative result 00

### Remarks on the definition

#### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in A^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J}(A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.



A strong negative result 00

### Remarks on the definition

#### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in A^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

(1) Elekes' theorem in this context: If  $(X, \mathcal{A}, \mu)$  is a  $\sigma$ -finite measure space, then  $(\mathcal{A}, \operatorname{Null}(\mu))$  has the  $\mathcal{Z}$ -covering property where  $\mathcal{Z} = \{S \subseteq \omega : \lim_{n \to \infty} \frac{|S \cap n|}{n} = 0\}$  is the *density zero ideal* (a tall  $F_{\sigma\delta}$  P-ideal).

A strong negative result

## Remarks on the definition

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

- (1) Elekes' theorem in this context: If  $(X, \mathcal{A}, \mu)$  is a  $\sigma$ -finite measure space, then  $(\mathcal{A}, \operatorname{Null}(\mu))$  has the  $\mathcal{Z}$ -covering property where  $\mathcal{Z} = \{S \subseteq \omega : \lim_{n \to \infty} \frac{|S \cap n|}{n} = 0\}$  is the *density zero ideal* (a tall  $F_{\sigma\delta}$  P-ideal).
- (2) If  $\mathcal{J}$  is not tall (i.e. there is an  $H \in [\omega]^{\omega}$  s.t.  $\mathcal{J} \upharpoonright H = [H]^{<\omega}$ ), then there is no  $(\mathcal{A}, I)$  with the  $\mathcal{J}$ -covering property.

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in A^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

(3) If (A, I) has the J-covering property, then (A[I], I) also has this property where A[I] is the "I-completion of A", that is

$$\mathcal{A}[I] = \{ B \subseteq X : \exists A \in \mathcal{A} A \triangle B \in I \}.$$

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in A^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

(3) If (A, I) has the J-covering property, then (A[I], I) also has this property where A[I] is the "I-completion of A", that is

$$\mathcal{A}[I] = \big\{ B \subseteq X : \exists A \in \mathcal{A} \ A \triangle B \in I \big\}.$$

(4) If (A, I) has the *J*-covering property, then for all Y ∈ A \ I the pair (A ↾ Y, I ↾ Y) also has this property.

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

(5) If  $I_1 \subseteq I_2$  are ideals on X and  $(\mathcal{A}, I_1)$  has the  $\mathcal{J}$ -covering property, then  $(\mathcal{A}, I_2)$  also has the  $\mathcal{J}$ -covering property.

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in A^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

#### Remarks

(5) If *I*<sub>1</sub> ⊆ *I*<sub>2</sub> are ideals on *X* and (*A*, *I*<sub>1</sub>) has the *J*-covering property, then (*A*, *I*<sub>2</sub>) also has the *J*-covering property.
(6) If (*A*, *I*) has the *J*<sub>0</sub>-covering property and *J*<sub>0</sub> ≤<sub>KB</sub> *J*<sub>1</sub>, i.e. ∃ *f* : ω fin-to-one ω ∀ *S* ∈ *J*<sub>0</sub> *f*<sup>-1</sup>[*S*] ∈ *J*<sub>1</sub>, then (*A*, *I*) has the *J*<sub>1</sub>-covering property as well.

A strong negative result 00

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Analytic uniformity

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in A^{\omega}$  is an (*I*-a.e.) infinite-fold cover, **THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

# Analytic uniformity

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

### Reformulation: (A, I) has the $\mathcal{J}$ -covering property iff

for every  $(\mathcal{A}, \operatorname{Borel}([\omega]^{\omega}))$ -measurable  $F : X \to [\omega]^{\omega}$ , there is an  $S \in \mathcal{J}$  such that  $\{x \in X : |F(x) \cap S| = \omega\} \in I^*$ .

A strong negative result

# Analytic uniformity

### $(\mathcal{A}, I)$ has the $\mathcal{J}$ -covering property:

**IF**  $(A_n)_{n \in \omega} \in \mathcal{A}^{\omega}$  is an (*I*-a.e.) infinite-fold cover,

**THEN**  $\exists S \in \mathcal{J} (A_n)_{n \in S}$  is also an *I*-a.e. infinite-fold cover.

### Reformulation: (A, I) has the $\mathcal{J}$ -covering property iff

for every  $(\mathcal{A}, \operatorname{Borel}([\omega]^{\omega}))$ -measurable  $F : X \to [\omega]^{\omega}$ , there is an  $S \in \mathcal{J}$  such that  $\{x \in X : |F(x) \cap S| = \omega\} \in I^*$ .

#### The case $I = \{\emptyset\} \sim \text{star-uniformity of } \mathcal{J}$

 $(\mathcal{P}(X), \{\emptyset\})$  has the  $\mathcal{J}$ -covering property iff  $|X| < \mathsf{non}^*(\mathcal{J})$  where  $\mathsf{non}^*(\mathcal{J}) =$ 

 $\min \{ |\mathcal{H}| : \mathcal{H} \subseteq [\omega]^{\omega} \text{ and } \nexists A \in \mathcal{J} \forall H \in \mathcal{H} |A \cap H| = \omega \}.$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

#### Notation

If A is clear from the context (usually it will be the Borel  $\sigma$ -algebra on a Polish space), then we will simply write:

/ has the  $\mathcal J\text{-covering property.}$ 

A strong negative result

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### Covering property vs. forcing indestructibility

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Covering property vs. forcing indestructibility

Assume that  $\mathcal{J}$  is a tall ideal on  $\omega$  and  $\mathbb{P}$  is a forcing notion. We say that  $\mathcal{J}$  is  $\mathbb{P}$ -*indestructible* if the ideal in  $V^{\mathbb{P}}$  generated by  $\mathcal{J}$  is tall,

### Covering property vs. forcing indestructibility

Assume that  $\mathcal{J}$  is a tall ideal on  $\omega$  and  $\mathbb{P}$  is a forcing notion. We say that  $\mathcal{J}$  is  $\mathbb{P}$ -*indestructible* if the ideal in  $V^{\mathbb{P}}$  generated by  $\mathcal{J}$  is tall, i.e.  $\Vdash_{\mathbb{P}} \forall H \in [\omega]^{\omega} \cap V^{\mathbb{P}} \exists S \in \mathcal{J}(\cap V) |H \cap S| = \omega$ .

## Covering property vs. forcing indestructibility

Assume that  $\mathcal{J}$  is a tall ideal on  $\omega$  and  $\mathbb{P}$  is a forcing notion. We say that  $\mathcal{J}$  is  $\mathbb{P}$ -*indestructible* if the ideal in  $V^{\mathbb{P}}$  generated by  $\mathcal{J}$  is tall, i.e.  $\Vdash_{\mathbb{P}} \forall H \in [\omega]^{\omega} \cap V^{\mathbb{P}} \exists S \in \mathcal{J}(\cap V) |H \cap S| = \omega$ .

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper.

## Covering property vs. forcing indestructibility

Assume that  $\mathcal{J}$  is a tall ideal on  $\omega$  and  $\mathbb{P}$  is a forcing notion. We say that  $\mathcal{J}$  is  $\mathbb{P}$ -*indestructible* if the ideal in  $V^{\mathbb{P}}$  generated by  $\mathcal{J}$  is tall, i.e.  $\Vdash_{\mathbb{P}} \forall H \in [\omega]^{\omega} \cap V^{\mathbb{P}} \exists S \in \mathcal{J}(\cap V) |H \cap S| = \omega$ .

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. Then

*I* has the  $\mathcal{J}$ -covering property  $\Rightarrow \mathcal{J}$  is  $\mathbb{P}_{I}$ -indestructible.

Assume that  $\mathcal{J}$  is a tall ideal on  $\omega$  and  $\mathbb{P}$  is a forcing notion. We say that  $\mathcal{J}$  is  $\mathbb{P}$ -*indestructible* if the ideal in  $V^{\mathbb{P}}$  generated by  $\mathcal{J}$  is tall, i.e.  $\Vdash_{\mathbb{P}} \forall H \in [\omega]^{\omega} \cap V^{\mathbb{P}} \exists S \in \mathcal{J}(\cap V) |H \cap S| = \omega$ .

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. Then

*I* has the  $\mathcal{J}$ -covering property  $\Rightarrow \mathcal{J}$  is  $\mathbb{P}_{I}$ -indestructible.

Proof: Assume on the contrary that there is a  $\mathbb{P}_{l}$ -name Y s.t.  $\Vdash_{\mathbb{P}_{l}} Y \in [\omega]^{\omega}$  and  $B \Vdash_{\mathbb{P}_{l}} \forall A \in \mathcal{J} | Y \cap A | < \omega$  for some  $B \in \mathbb{P}_{l}$ .

Assume that  $\mathcal{J}$  is a tall ideal on  $\omega$  and  $\mathbb{P}$  is a forcing notion. We say that  $\mathcal{J}$  is  $\mathbb{P}$ -*indestructible* if the ideal in  $V^{\mathbb{P}}$  generated by  $\mathcal{J}$  is tall, i.e.  $\Vdash_{\mathbb{P}} \forall H \in [\omega]^{\omega} \cap V^{\mathbb{P}} \exists S \in \mathcal{J}(\cap V) |H \cap S| = \omega$ .

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. Then

*I* has the  $\mathcal{J}$ -covering property  $\Rightarrow \mathcal{J}$  is  $\mathbb{P}_{I}$ -indestructible.

Proof: Assume on the contrary that there is a  $\mathbb{P}_{I}$ -name Y s.t.  $\Vdash_{\mathbb{P}_{I}} Y \in [\omega]^{\omega}$  and  $B \Vdash_{\mathbb{P}_{I}} \forall A \in \mathcal{J} | Y \cap A | < \omega$  for some  $B \in \mathbb{P}_{I}$ . Then (by properness) there are a  $C \in \mathbb{P}_{I}$ ,  $C \subseteq B$ , and a Borel function  $f : C \to [\omega]^{\omega}$  (coded in V) such that  $C \Vdash_{\mathbb{P}_{I}} f(\dot{r}_{gen}) = \dot{Y}$ .

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. If (Borel(X), I) has the  $\mathcal{J}$ -covering property, then  $\mathcal{J}$  is  $\mathbb{P}_I$ -indestructible.

Proof (continued): For each  $n \in \omega$  let

$$Y_n = f^{-1} \big[ \{ \boldsymbol{S} \in [\omega]^{\omega} : \boldsymbol{n} \in \boldsymbol{S} \} \big] \in \operatorname{Borel}(\boldsymbol{X}).$$

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. If (Borel(X), I) has the  $\mathcal{J}$ -covering property, then  $\mathcal{J}$  is  $\mathbb{P}_I$ -indestructible.

Proof (continued): For each  $n \in \omega$  let

$$Y_n = f^{-1} \big[ \{ \boldsymbol{S} \in [\omega]^{\omega} : n \in \boldsymbol{S} \} \big] \in \operatorname{Borel}(\boldsymbol{X}).$$

Then  $(Y_n)_{n \in \omega}$  is an infinite-fold cover of  $C: x \in Y_n \Leftrightarrow n \in f(x)$ .

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. If (Borel(X), I) has the  $\mathcal{J}$ -covering property, then  $\mathcal{J}$  is  $\mathbb{P}_I$ -indestructible.

Proof (continued): For each  $n \in \omega$  let

$$Y_n = f^{-1} \big[ \{ \boldsymbol{S} \in [\omega]^{\omega} : \boldsymbol{n} \in \boldsymbol{S} \} \big] \in \operatorname{Borel}(\boldsymbol{X}).$$

Then  $(Y_n)_{n \in \omega}$  is an infinite-fold cover of C:  $x \in Y_n \Leftrightarrow n \in f(x)$ .  $I \upharpoonright C$  has the  $\mathcal{J}$ -covering property

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. If (Borel(X), I) has the  $\mathcal{J}$ -covering property, then  $\mathcal{J}$  is  $\mathbb{P}_I$ -indestructible.

Proof (continued): For each  $n \in \omega$  let

$$Y_n = f^{-1} \big[ \{ \boldsymbol{S} \in [\omega]^{\omega} : \boldsymbol{n} \in \boldsymbol{S} \} \big] \in \operatorname{Borel}(\boldsymbol{X}).$$

Then  $(Y_n)_{n \in \omega}$  is an infinite-fold cover of C:  $x \in Y_n \Leftrightarrow n \in f(x)$ .  $I \upharpoonright C$  has the  $\mathcal{J}$ -covering property so there is an  $A \in \mathcal{J}$  such that  $(Y_n)_{n \in A}$  is an *I*-a.e. infinite-fold cover of C,

# Covering property vs. forcing indestructibility

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. If (Borel(X), I) has the  $\mathcal{J}$ -covering property, then  $\mathcal{J}$  is  $\mathbb{P}_I$ -indestructible.

Proof (continued): For each  $n \in \omega$  let

$$Y_n = f^{-1} \big[ \{ \boldsymbol{S} \in [\omega]^{\omega} : \boldsymbol{n} \in \boldsymbol{S} \} \big] \in \operatorname{Borel}(\boldsymbol{X}).$$

Then  $(Y_n)_{n \in \omega}$  is an infinite-fold cover of C:  $x \in Y_n \Leftrightarrow n \in f(x)$ .  $I \upharpoonright C$  has the  $\mathcal{J}$ -covering property so there is an  $A \in \mathcal{J}$  such that  $(Y_n)_{n \in A}$  is an *I*-a.e. infinite-fold cover of *C*, that is,  $\{x \in C : |f(x) \cap A| < \omega\} \in I$ .

# Covering property vs. forcing indestructibility

#### Theorem

Let *X* be a Polish space, *I* a  $\sigma$ -ideal on *X*, and assume that the forcing notion  $\mathbb{P}_I = \text{Borel}(X) \setminus I$  is proper. If (Borel(X), I) has the  $\mathcal{J}$ -covering property, then  $\mathcal{J}$  is  $\mathbb{P}_I$ -indestructible.

Proof (continued): For each  $n \in \omega$  let

$$Y_n = f^{-1} \big[ \{ \boldsymbol{S} \in [\omega]^{\omega} : \boldsymbol{n} \in \boldsymbol{S} \} \big] \in \operatorname{Borel}(\boldsymbol{X}).$$

Then  $(Y_n)_{n \in \omega}$  is an infinite-fold cover of C:  $x \in Y_n \Leftrightarrow n \in f(x)$ .  $I \upharpoonright C$  has the  $\mathcal{J}$ -covering property so there is an  $A \in \mathcal{J}$  such that  $(Y_n)_{n \in A}$  is an *I*-a.e. infinite-fold cover of *C*, that is,  $\{x \in C : |f(x) \cap A| < \omega\} \in I$ . In the forcing language, it means that  $C \Vdash_{\mathbb{P}_I} |\dot{Y} \cap A| = |f(\dot{r}_{gen}) \cap A| = \omega$ , a contradiction. Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

## Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

## Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

### Proposition

Assume *I* is one of the following ideals on  $X = \omega^{\omega}$ :

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

### Proposition

Assume *I* is one of the following ideals on  $X = \omega^{\omega}$ :

• I = NWD is the ideal of nowhere dense subsets of  $\omega^{\omega}$ ;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

## Proposition

Assume *I* is one of the following ideals on  $X = \omega^{\omega}$ :

- I = NWD is the ideal of nowhere dense subsets of  $\omega^{\omega}$ ;
- *I* = *K*<sub>σ</sub> is the σ-ideal (σ-)generated by compact sets, in other words, *K*<sub>σ</sub> = ⟨{*g* ∈ ω<sup>ω</sup> : *g* ≤\* *f*} : *f* ∈ ω<sup>ω</sup>⟩<sub>id</sub> where *g* ≤\* *f* iff ∀<sup>∞</sup> *n g*(*n*) ≤ *f*(*n*).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

### Proposition

Assume *I* is one of the following ideals on  $X = \omega^{\omega}$ :

- I = NWD is the ideal of nowhere dense subsets of  $\omega^{\omega}$ ;
- *I* = *K*<sub>σ</sub> is the σ-ideal (σ-)generated by compact sets, in other words, *K*<sub>σ</sub> = ⟨{*g* ∈ ω<sup>ω</sup> : *g* ≤\* *f*} : *f* ∈ ω<sup>ω</sup>⟩<sub>id</sub> where *g* ≤\* *f* iff ∀<sup>∞</sup> *n g*(*n*) ≤ *f*(*n*).

Then *I* does not have the  $\mathcal{J}$ -covering property for any  $\mathcal{J}$ .

# Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

### Proposition

Assume *I* is one of the following ideals on  $X = \omega^{\omega}$ :

- I = NWD is the ideal of nowhere dense subsets of  $\omega^{\omega}$ ;
- *I* = *K*<sub>σ</sub> is the σ-ideal (σ-)generated by compact sets, in other words, *K*<sub>σ</sub> = ⟨{*g* ∈ ω<sup>ω</sup> : *g* ≤\* *f*} : *f* ∈ ω<sup>ω</sup>⟩<sub>id</sub> where *g* ≤\* *f* iff ∀<sup>∞</sup> *n g*(*n*) ≤ *f*(*n*).

Then I does not have the  $\mathcal{J}$ -covering property for any  $\mathcal{J}$ .

Proof: Consider the following infinite-fold cover of  $\omega^{\omega}$ :

$$A_n = \{f \in \omega^{\omega} : f(n) \neq 0\} \cup \{g \in \omega^{\omega} : \forall^{\infty} n g(n) = 0\}.$$

# Counterexamples: I = NWD and $I = \mathcal{K}_{\sigma}$

### Proposition

Assume *I* is one of the following ideals on  $X = \omega^{\omega}$ :

- I = NWD is the ideal of nowhere dense subsets of  $\omega^{\omega}$ ;
- *I* = *K*<sub>σ</sub> is the σ-ideal (σ-)generated by compact sets, in other words, *K*<sub>σ</sub> = ⟨{*g* ∈ ω<sup>ω</sup> : *g* ≤\* *f*} : *f* ∈ ω<sup>ω</sup>⟩<sub>id</sub> where *g* ≤\* *f* iff ∀<sup>∞</sup> *n g*(*n*) ≤ *f*(*n*).

Then I does not have the  $\mathcal{J}$ -covering property for any  $\mathcal{J}$ .

Proof: Consider the following infinite-fold cover of  $\omega^{\omega}$ :

$$A_n = \{f \in \omega^{\omega} : f(n) \neq 0\} \cup \{g \in \omega^{\omega} : \forall^{\infty} n g(n) = 0\}.$$

If  $S, \omega \setminus S \in [\omega]^{\omega}$ , then  $\omega^{\omega} \setminus \limsup_{n \in S} A_n = \liminf_{n \in S} (\omega^{\omega} \setminus A_n) = \{f \in \omega^{\omega} : \forall^{\infty} n \in S f(n) = 0\}$  is dense and not in  $\mathcal{K}_{\sigma}$ .

Motivation

Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# A strong counterexample: $I = \mathcal{N}$ and $\mathcal{J} = \mathcal{I}_{1/n}$

Motivation

A strong negative result 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

# A strong counterexample: $I = \mathcal{N}$ and $\mathcal{J} = \mathcal{I}_{1/n}$

### The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# A strong counterexample: $I = \mathcal{N}$ and $\mathcal{J} = \mathcal{I}_{1/n}$

The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

Clearly,  $\mathcal{I}_{1/n} \subsetneq \mathcal{Z}$  and  $\mathcal{I}_{1/n}$  is a tall  $F_{\sigma}$  P-ideal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# A strong counterexample: $I = \mathcal{N}$ and $\mathcal{J} = \mathcal{I}_{1/n}$

The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

Clearly,  $\mathcal{I}_{1/n} \subsetneq \mathcal{Z}$  and  $\mathcal{I}_{1/n}$  is a tall  $F_{\sigma}$  P-ideal.

## Proposition

The ideal  $\mathcal{N}$  of subsets of [0, 1] with measure 0 does not have the  $\mathcal{I}_{1/n}$ -covering property.

# A strong counterexample: $I = \mathcal{N}$ and $\mathcal{J} = \mathcal{I}_{1/n}$

The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

Clearly,  $\mathcal{I}_{1/n} \subsetneq \mathcal{Z}$  and  $\mathcal{I}_{1/n}$  is a tall  $F_{\sigma}$  P-ideal.

## Proposition

The ideal  $\mathcal{N}$  of subsets of [0, 1] with measure 0 does not have the  $\mathcal{I}_{1/n}$ -covering property.

Proof: Let  $(A_n = [a_n, b_n])_{n \in \omega}$  be an infinite-fold cover where  $b_n - a_n = \frac{1}{n+1}$ .

# A strong counterexample: $I = \mathcal{N}$ and $\mathcal{J} = \mathcal{I}_{1/n}$

The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

Clearly,  $\mathcal{I}_{1/n} \subsetneq \mathcal{Z}$  and  $\mathcal{I}_{1/n}$  is a tall  $F_{\sigma}$  P-ideal.

## Proposition

The ideal  $\mathcal{N}$  of subsets of [0, 1] with measure 0 does not have the  $\mathcal{I}_{1/n}$ -covering property.

Proof: Let  $(A_n = [a_n, b_n])_{n \in \omega}$  be an infinite-fold cover where  $b_n - a_n = \frac{1}{n+1}$ . If  $S \in \mathcal{I}_{1/n}$ , then  $\sum_{n \in S} \lambda(A_n) < \infty$ , in particular  $\lambda(\limsup_{n \in S} A_n) = 0$  (by the Borel-Cantelli lemma).

Motivation

Examples and the category case  $\circ \circ \circ \circ \circ \circ \circ$ 

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $\mathcal{ED}_{fin}$  in the Katětov-Blass order

# $\mathcal{ED}_{fin}$ in the Katětov-Blass order

## $\mathcal{ED} \text{ and } \mathcal{ED}_{fin}$

$$\mathcal{ED} = \left\{ \mathcal{A} \subseteq \omega imes \omega : \limsup_{n \in \omega} |(\mathcal{A})_n| < \infty 
ight\}$$

where  $(A)_n = \{m \in \omega : (n, m) \in A\}$ 



v

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# $\mathcal{ED}_{\mathrm{fin}}$ in the Katětov-Blass order

## $\mathcal{ED}$ and $\mathcal{ED}_{fin}$

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \in \omega} |(A)_n| < \infty \right\}$$
  
where  $(A)_n = \{ m \in \omega : (n, m) \in A \}$  and  $\mathcal{ED}_{\text{fin}} = \mathcal{ED} \upharpoonright \Delta$  where  $\Delta = \{ (n, m) \in \omega \times \omega : m \le n \}.$ 

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# $\mathcal{ED}_{fin}$ in the Katětov-Blass order

## $\mathcal{ED} \text{ and } \mathcal{ED}_{fin}$

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \in \omega} |(A)_n| < \infty \right\}$$

where  $(A)_n = \{m \in \omega : (n, m) \in A\}$  and  $\mathcal{ED}_{fin} = \mathcal{ED} \upharpoonright \Delta$  where  $\Delta = \{(n, m) \in \omega \times \omega : m \le n\}$ .  $\mathcal{ED}$  and  $\mathcal{ED}_{fin}$  are tall  $F_{\sigma}$  non P-ideals.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

# $\mathcal{ED}_{fin}$ in the Katětov-Blass order

### $\mathcal{ED}$ and $\mathcal{ED}_{fin}$

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \in \omega} |(A)_n| < \infty \right\}$$

where  $(A)_n = \{m \in \omega : (n, m) \in A\}$  and  $\mathcal{ED}_{fin} = \mathcal{ED} \upharpoonright \Delta$  where  $\Delta = \{(n, m) \in \omega \times \omega : m \le n\}$ .  $\mathcal{ED}$  and  $\mathcal{ED}_{fin}$  are tall  $F_{\sigma}$  non P-ideals.

#### Proposition

 $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$  for each tall analytic P-ideal  $\mathcal{J}$ .

# $\mathcal{ED}_{fin}$ in the Katětov-Blass order

## $\mathcal{ED}$ and $\mathcal{ED}_{fin}$

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \in \omega} |(A)_n| < \infty \right\}$$

where  $(A)_n = \{m \in \omega : (n, m) \in A\}$  and  $\mathcal{ED}_{fin} = \mathcal{ED} \upharpoonright \Delta$  where  $\Delta = \{(n, m) \in \omega \times \omega : m \le n\}$ .  $\mathcal{ED}$  and  $\mathcal{ED}_{fin}$  are tall  $F_{\sigma}$  non P-ideals.

#### Proposition

 $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$  for each tall analytic P-ideal  $\mathcal{J}$ .

Proof: Use Solecki's representation theorem:  $\mathcal{J} = \operatorname{Exh}(\varphi)$  for some lower semicontinuous submeasure  $\varphi$  on  $\omega$ , and because of tallness we have  $\lim_{n\to\infty} \varphi(\{n\}) = 0$ .

# $\mathcal{ED}_{fin}$ in the Katětov-Blass order

## $\mathcal{ED}$ and $\mathcal{ED}_{fin}$

$$\mathcal{ED} = \left\{ A \subseteq \omega \times \omega : \limsup_{n \in \omega} |(A)_n| < \infty \right\}$$

where  $(A)_n = \{m \in \omega : (n, m) \in A\}$  and  $\mathcal{ED}_{fin} = \mathcal{ED} \upharpoonright \Delta$  where  $\Delta = \{(n, m) \in \omega \times \omega : m \le n\}$ .  $\mathcal{ED}$  and  $\mathcal{ED}_{fin}$  are tall  $F_{\sigma}$  non P-ideals.

#### Proposition

 $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$  for each tall analytic P-ideal  $\mathcal{J}$ .

Proof: Use Solecki's representation theorem:  $\mathcal{J} = \operatorname{Exh}(\varphi)$  for some lower semicontinuous submeasure  $\varphi$  on  $\omega$ , and because of tallness we have  $\lim_{n\to\infty} \varphi(\{n\}) = 0$ .

Motivation 000000000 Examples and the category case  $\circ\circ\circ\circ\circ\circ\circ$ 

A strong negative result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## The category case

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## The category case

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of *X*. W.l.o.g., we can assume that all  $A_{(n,m)}$ 's are open.

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of *X*. W.I.o.g., we can assume that all  $A_{(n,m)}$ 's are open. Enumerate  $\{U_k : k \in \omega\}$  a base of *X*. By recursion on *k* we will define a sequence  $(n_k, m_k)_{k\in\omega} \in \Delta^{\omega}$ :

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of X. W.I.o.g., we can assume that all  $A_{(n,m)}$ 's are open. Enumerate  $\{U_k : k \in \omega\}$  a base of X. By recursion on k we will define a sequence  $(n_k, m_k)_{k\in\omega} \in \Delta^{\omega}$ :

• 
$$(n_0,m_0)\in\Delta$$
 such that  $A_{(n_0,m_0)}\cap U_0
eq \emptyset.$ 

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of X. W.I.o.g., we can assume that all  $A_{(n,m)}$ 's are open. Enumerate  $\{U_k : k \in \omega\}$  a base of X. By recursion on k we will define a sequence  $(n_k, m_k)_{k\in\omega} \in \Delta^{\omega}$ :

- $(n_0, m_0) \in \Delta$  such that  $A_{(n_0, m_0)} \cap U_0 \neq \emptyset$ .
- If (n<sub>i</sub>, m<sub>i</sub>) are done for i < k, then choose an (n<sub>k</sub>, m<sub>k</sub>) ∈ Δ such that n<sub>k</sub> ≠ n<sub>i</sub> for i < k and A<sub>(n<sub>k</sub>, m<sub>k</sub>)</sub> ∩ U<sub>k</sub> ≠ Ø.

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of X. W.I.o.g., we can assume that all  $A_{(n,m)}$ 's are open. Enumerate  $\{U_k : k \in \omega\}$  a base of X. By recursion on k we will define a sequence  $(n_k, m_k)_{k\in\omega} \in \Delta^{\omega}$ :

- $(n_0, m_0) \in \Delta$  such that  $A_{(n_0, m_0)} \cap U_0 \neq \emptyset$ .
- If (n<sub>i</sub>, m<sub>i</sub>) are done for i < k, then choose an (n<sub>k</sub>, m<sub>k</sub>) ∈ Δ such that n<sub>k</sub> ≠ n<sub>i</sub> for i < k and A<sub>(n<sub>k</sub>, m<sub>k</sub>)</sub> ∩ U<sub>k</sub> ≠ Ø.

Finally, let  $S = \{(n_k, m_k) : k \in \omega\} \in \mathcal{ED}_{fin}$ .

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of X. W.I.o.g., we can assume that all  $A_{(n,m)}$ 's are open. Enumerate  $\{U_k : k \in \omega\}$  a base of X. By recursion on k we will define a sequence  $(n_k, m_k)_{k\in\omega} \in \Delta^{\omega}$ :

- $(n_0, m_0) \in \Delta$  such that  $A_{(n_0, m_0)} \cap U_0 \neq \emptyset$ .
- If (n<sub>i</sub>, m<sub>i</sub>) are done for i < k, then choose an (n<sub>k</sub>, m<sub>k</sub>) ∈ Δ such that n<sub>k</sub> ≠ n<sub>i</sub> for i < k and A<sub>(n<sub>k</sub>, m<sub>k</sub>)</sub> ∩ U<sub>k</sub> ≠ Ø.

Finally, let  $S = \{(n_k, m_k) : k \in \omega\} \in \mathcal{ED}_{\text{fin}}$ . For every  $k \in \omega$ , the set  $\bigcup_{i > k} A_{(n_i, m_i)}$  is dense and open.

#### Theorem

The ideal  $\mathcal{M}(X)$  of meager subsets of any Polish space X has the  $\mathcal{ED}_{fin}$ -covering property.

Proof: Let  $(A_{(n,m)})_{(n,m)\in\Delta}$  be an infinite-fold Borel cover of X. W.I.o.g., we can assume that all  $A_{(n,m)}$ 's are open. Enumerate  $\{U_k : k \in \omega\}$  a base of X. By recursion on k we will define a sequence  $(n_k, m_k)_{k\in\omega} \in \Delta^{\omega}$ :

- $(n_0, m_0) \in \Delta$  such that  $A_{(n_0, m_0)} \cap U_0 \neq \emptyset$ .
- If (n<sub>i</sub>, m<sub>i</sub>) are done for i < k, then choose an (n<sub>k</sub>, m<sub>k</sub>) ∈ Δ such that n<sub>k</sub> ≠ n<sub>i</sub> for i < k and A<sub>(n<sub>k</sub>,m<sub>k</sub>)</sub> ∩ U<sub>k</sub> ≠ Ø.

Finally, let  $S = \{(n_k, m_k) : k \in \omega\} \in \mathcal{ED}_{\text{fin}}$ . For every  $k \in \omega$ , the set  $\bigcup_{i \geq k} A_{(n_i, m_i)}$  is dense and open. Consequently,  $\limsup_{(n,m) \in S} A_{(n,m)} = \bigcap_{k \in \omega} \bigcup_{i \geq k} A_{(n_i, m_i)}$  is a dense  $G_{\delta}$  set, hence it is residual (i.e. co-meager). Motivation

Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

## More on the category case

Motivation 00000000 Examples and the category case

A strong negative result 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

## More on the category case

## Corollary

## If $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then $\mathcal{M} = \mathcal{M}(2^{\omega})$ has the $\mathcal{J}$ -covering property,

Examples and the category case

A strong negative result 00

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# More on the category case

## Corollary

If  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then  $\mathcal{M} = \mathcal{M}(2^{\omega})$  has the  $\mathcal{J}$ -covering property, and hence  $\mathcal{J}$  is Cohen-indestructible.

Examples and the category case

A strong negative result 00

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# More on the category case

## Corollary

If  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then  $\mathcal{M} = \mathcal{M}(2^{\omega})$  has the  $\mathcal{J}$ -covering property, and hence  $\mathcal{J}$  is Cohen-indestructible.

## Question

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# More on the category case

## Corollary

If  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then  $\mathcal{M} = \mathcal{M}(2^{\omega})$  has the  $\mathcal{J}$ -covering property, and hence  $\mathcal{J}$  is Cohen-indestructible.

## Question

(1) Assume  $\mathcal{J}$  is Cohen-indestructible. Does it imply that  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property?

### More on the category case

#### Corollary

If  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then  $\mathcal{M} = \mathcal{M}(2^{\omega})$  has the  $\mathcal{J}$ -covering property, and hence  $\mathcal{J}$  is Cohen-indestructible.

#### Question

- (1) Assume  $\mathcal{J}$  is Cohen-indestructible. Does it imply that  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property?
- (2) Assume M has the  $\mathcal{J}$ -covering property. Does it imply that  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ ?

#### Corollary

If  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then  $\mathcal{M} = \mathcal{M}(2^{\omega})$  has the  $\mathcal{J}$ -covering property, and hence  $\mathcal{J}$  is Cohen-indestructible.

#### Question

- (1) Assume  $\mathcal{J}$  is Cohen-indestructible. Does it imply that  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property?
- (2) Assume  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property. Does it imply that  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ ?

#### Answer for Question (1): No

The ideal  $\operatorname{Fin} \otimes \operatorname{Fin} = \{A \subseteq \omega \times \omega : \forall^{\infty} \ n \in \omega \ |(A)_n| < \omega\}$  (a tall  $F_{\sigma\delta\sigma}$  non P-ideal) and  $\mathcal{ED}$ 

#### Corollary

If  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ , then  $\mathcal{M} = \mathcal{M}(2^{\omega})$  has the  $\mathcal{J}$ -covering property, and hence  $\mathcal{J}$  is Cohen-indestructible.

#### Question

- Assume J is Cohen-indestructible. Does it imply that M has the J-covering property?
- (2) Assume  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property. Does it imply that  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ ?

#### Answer for Question (1): No

The ideal Fin  $\otimes$  Fin = { $A \subseteq \omega \times \omega : \forall^{\infty} n \in \omega |(A)_n| < \omega$ } (a tall  $F_{\sigma\delta\sigma}$  non P-ideal) and  $\mathcal{ED}$  are Cohen-indestructible but  $\mathcal{M}$  does not have the Fin  $\otimes$  Fin- or the  $\mathcal{ED}$ -covering properties.

Motivation

Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### More on the category case

Examples and the category case

A strong negative result 00

▲□▶▲□▶▲□▶▲□▶ □ のQ@

### More on the category case

#### Question (2):

# Assume $\mathcal{M}$ has the $\mathcal{J}$ -covering property. Does it imply that $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ ?

#### Question (2):

Assume  $\mathcal M$  has the  $\mathcal J\text{-covering property. Does it imply that <math display="inline">\mathcal E\mathcal D_{fin}\leq_{KB}\mathcal J\text{?}$ 

#### Answer for Question (2): No

#### Question (2):

Assume  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property. Does it imply that  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ ?

#### Answer for Question (2): No

(a) If  $\mathfrak{t} = \mathfrak{c}$  and  $|\mathcal{A}| \leq \mathfrak{c}$  then there is no Katětov-Blass-smallest element of the family  $\{\mathcal{J} : (\mathcal{A}, I) \text{ has the } \mathcal{J}\text{-covering property}\}.$ 

#### Question (2):

Assume  $\mathcal{M}$  has the  $\mathcal{J}$ -covering property. Does it imply that  $\mathcal{ED}_{fin} \leq_{KB} \mathcal{J}$ ?

#### Answer for Question (2): No

(a) If  $\mathfrak{t} = \mathfrak{c}$  and  $|\mathcal{A}| \leq \mathfrak{c}$  then there is no Katětov-Blass-smallest element of the family { $\mathcal{J} : (\mathcal{A}, I)$  has the  $\mathcal{J}$ -covering property}. (Proof: usual construction by recursion.)

#### Question (2):

Assume  $\mathcal M$  has the  $\mathcal J$  -covering property. Does it imply that  $\mathcal{ED}_{fin}\leq_{KB}\mathcal J$ ?

#### Answer for Question (2): No

- (a) If  $\mathfrak{t} = \mathfrak{c}$  and  $|\mathcal{A}| \leq \mathfrak{c}$  then there is no Katětov-Blass-smallest element of the family { $\mathcal{J} : (\mathcal{A}, I)$  has the  $\mathcal{J}$ -covering property}. (Proof: usual construction by recursion.)
- (b) After adding  $\omega_1$  Cohen-reals there is an ideal  $\mathcal{J}$  such that  $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{J}$  (in particular,  $\mathcal{Z} \not\leq_{KB} \mathcal{J}$ ) but  $\mathcal{N}$  and  $\mathcal{M}$  have the  $\mathcal{J}$ -covering property.

#### Question (2):

Assume  $\mathcal M$  has the  $\mathcal J$  -covering property. Does it imply that  $\mathcal{ED}_{fin}\leq_{KB}\mathcal J$ ?

#### Answer for Question (2): No

- (a) If  $\mathfrak{t} = \mathfrak{c}$  and  $|\mathcal{A}| \leq \mathfrak{c}$  then there is no Katětov-Blass-smallest element of the family  $\{\mathcal{J} : (\mathcal{A}, I) \text{ has the } \mathcal{J}\text{-covering property}\}$ . (Proof: usual construction by recursion.)
- (b) After adding  $\omega_1$  Cohen-reals there is an ideal  $\mathcal{J}$  such that  $\mathcal{ED}_{\mathrm{fin}} \nleq_{\mathrm{KB}} \mathcal{J}$  (in particular,  $\mathcal{Z} \nleq_{\mathrm{KB}} \mathcal{J}$ ) but  $\mathcal{N}$  and  $\mathcal{M}$  have the  $\mathcal{J}$ -covering property. (Proof: consider the ideal generated by the generic Cohen-reals.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### Some related questions

Examples and the category case

A strong negative result 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Some related questions

#### Question

#### Do there exist (analytic) (P-)ideals $\mathcal{J}_0$ and $\mathcal{J}_1$ in ZFC such that

#### Question

Do there exist (analytic) (P-)ideals  $\mathcal{J}_0$  and  $\mathcal{J}_1$  in ZFC such that (1)  $\mathcal{Z} \not\leq_{KB} \mathcal{J}_0$  but  $\mathcal{N}$  has the  $\mathcal{J}_0$ -covering property?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### Some related questions

#### Question

Do there exist (analytic) (P-)ideals  $\mathcal{J}_0$  and  $\mathcal{J}_1$  in ZFC such that

(1)  $\mathcal{Z} \not\leq_{KB} \mathcal{J}_0$  but  $\mathcal{N}$  has the  $\mathcal{J}_0$ -covering property? (Yes (by Sz. Głąb), there is such a Borel non P-ideal.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### Some related questions

#### Question

Do there exist (analytic) (P-)ideals  $\mathcal{J}_0$  and  $\mathcal{J}_1$  in ZFC such that

- (1)  $\mathcal{Z} \not\leq_{KB} \mathcal{J}_0$  but  $\mathcal{N}$  has the  $\mathcal{J}_0$ -covering property? (Yes (by Sz. Głąb), there is such a Borel non P-ideal.)
- (2)  $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{J}_1$  but  $\mathcal{M}$  has the  $\mathcal{J}_1$ -covering property?

#### Question

Do there exist (analytic) (P-)ideals  $\mathcal{J}_0$  and  $\mathcal{J}_1$  in ZFC such that

- (1)  $\mathcal{Z} \not\leq_{KB} \mathcal{J}_0$  but  $\mathcal{N}$  has the  $\mathcal{J}_0$ -covering property? (Yes (by Sz. Głąb), there is such a Borel non P-ideal.)
- (2)  $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{J}_1$  but  $\mathcal{M}$  has the  $\mathcal{J}_1$ -covering property?

#### Question

Do there exist Katětov-Blass-smallest ideals in the following families:

#### Question

Do there exist (analytic) (P-)ideals  $\mathcal{J}_0$  and  $\mathcal{J}_1$  in ZFC such that

- (1)  $\mathcal{Z} \not\leq_{KB} \mathcal{J}_0$  but  $\mathcal{N}$  has the  $\mathcal{J}_0$ -covering property? (Yes (by Sz. Głąb), there is such a Borel non P-ideal.)
- (2)  $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{J}_1$  but  $\mathcal{M}$  has the  $\mathcal{J}_1$ -covering property?

#### Question

Do there exist Katětov-Blass-smallest ideals in the following families:

(1) the family of all analytic (or Borel) ideals  $\mathcal{J}$  such that  $\mathcal{N}$  has the  $\mathcal{J}$ -covering property?

#### Question

Do there exist (analytic) (P-)ideals  $\mathcal{J}_0$  and  $\mathcal{J}_1$  in ZFC such that

- (1)  $\mathcal{Z} \not\leq_{KB} \mathcal{J}_0$  but  $\mathcal{N}$  has the  $\mathcal{J}_0$ -covering property? (Yes (by Sz. Głąb), there is such a Borel non P-ideal.)
- (2)  $\mathcal{ED}_{fin} \not\leq_{KB} \mathcal{J}_1$  but  $\mathcal{M}$  has the  $\mathcal{J}_1$ -covering property?

#### Question

Do there exist Katětov-Blass-smallest ideals in the following families:

- the family of all analytic (or Borel) ideals J such that N has the J-covering property?
- (2) the family of all analytic (or Borel) ideals J such that M has the J-covering property?

Motivation 00000000 Examples and the category case

A strong negative result •
o

### When the $\mathcal{J}$ -covering property strongly fails

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

### When the $\mathcal{J}$ -covering property strongly fails

#### Question

Assume X is a Polish space, I is an ideal on X, and I does not have the  $\mathcal{J}$ -covering property:

### When the $\mathcal{J}$ -covering property strongly fails

#### Question

Assume *X* is a Polish space, *I* is an ideal on *X*, and *I* does not have the  $\mathcal{J}$ -covering property: there is an infinite-fold Borel cover  $(A_n)_{n \in \omega}$  such that  $\limsup_{n \in S} A_n \notin I^*$  for each  $S \in \mathcal{J}$ .

### When the $\mathcal{J}$ -covering property strongly fails

#### Question

Assume *X* is a Polish space, *I* is an ideal on *X*, and *I* does not have the  $\mathcal{J}$ -covering property: there is an infinite-fold Borel cover  $(A_n)_{n \in \omega}$  such that  $\limsup_{n \in S} A_n \notin I^*$  for each  $S \in \mathcal{J}$ . Does it imply that the  $\mathcal{J}$ -covering property strongly fails?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

### When the $\mathcal{J}$ -covering property strongly fails

#### Question

Assume *X* is a Polish space, *I* is an ideal on *X*, and *I* does not have the  $\mathcal{J}$ -covering property: there is an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  such that  $\limsup_{n\in S} A_n \notin I^*$  for each  $S \in \mathcal{J}$ . Does it imply that the  $\mathcal{J}$ -covering property strongly fails? Does there exist an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  of *X* such that  $\limsup_{n\in S} A_n \in I$  for each  $S \in \mathcal{J}$ ?

### When the $\mathcal{J}$ -covering property strongly fails

#### Question

Assume *X* is a Polish space, *I* is an ideal on *X*, and *I* does not have the  $\mathcal{J}$ -covering property: there is an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  such that  $\limsup_{n\in S} A_n \notin I^*$  for each  $S \in \mathcal{J}$ . Does it imply that the  $\mathcal{J}$ -covering property strongly fails? Does there exist an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  of *X* such that  $\limsup_{n\in S} A_n \in I$  for each  $S \in \mathcal{J}$ ?

#### Answer: No

Consider  $X = \mathbb{R}$  and let

 $I = \big\{ A \subseteq \mathbb{R} : A \cap (-\infty, 0] \text{ is meager and } A \cap [0, \infty) \text{ is null} \big\}.$ 

### When the $\mathcal{J}$ -covering property strongly fails

#### Question

Assume *X* is a Polish space, *I* is an ideal on *X*, and *I* does not have the  $\mathcal{J}$ -covering property: there is an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  such that  $\limsup_{n\in S} A_n \notin I^*$  for each  $S \in \mathcal{J}$ . Does it imply that the  $\mathcal{J}$ -covering property strongly fails? Does there exist an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  of *X* such that  $\limsup_{n\in S} A_n \in I$  for each  $S \in \mathcal{J}$ ?

#### Answer: No

Consider  $X = \mathbb{R}$  and let

 $I = \big\{ A \subseteq \mathbb{R} : A \cap (-\infty, 0] \text{ is meager and } A \cap [0, \infty) \text{ is null} \big\}.$ 

Then *I* does not have the  $\mathcal{I}_{1/n}$ -covering property but for each infinite-fold Borel cover  $(A_n)_{n \in \omega}$  of *X*, there is an  $S \in \mathcal{I}_{1/n}$  such that  $\limsup_{n \in S} A_n \in \mathcal{M}((-\infty, 0])^* \subseteq I^+ (= \mathcal{P}(\mathbb{R}) \setminus I)$ .

Motivation

Examples and the category case

A strong negative result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

### Assume *I* is translation invariant...

Examples and the category case

A strong negative result •

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

### Assume I is translation invariant...

#### Theorem

Assume *G* is a Polish group,  $D \subseteq G$  is countable and dense, *I* is a translation invariant ccc  $\sigma$ -ideal on *G* fulfilling the condition

Examples and the category case

A strong negative result •

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

### Assume / is translation invariant...

#### Theorem

Assume *G* is a Polish group,  $D \subseteq G$  is countable and dense, *I* is a translation invariant ccc  $\sigma$ -ideal on *G* fulfilling the condition

 $\forall X \in Borel(G) \setminus I D + X \in I^*.$ 

### Assume / is translation invariant...

#### Theorem

Assume *G* is a Polish group,  $D \subseteq G$  is countable and dense, *I* is a translation invariant ccc  $\sigma$ -ideal on *G* fulfilling the condition

 $\forall X \in Borel(G) \setminus I D + X \in I^*.$ 

Assume furthermore that  $\mathcal{J}$  is a P-ideal and I does not have the  $\mathcal{J}$ -covering property.

### Assume / is translation invariant...

#### Theorem

Assume *G* is a Polish group,  $D \subseteq G$  is countable and dense, *I* is a translation invariant ccc  $\sigma$ -ideal on *G* fulfilling the condition

 $\forall X \in Borel(G) \setminus I D + X \in I^*.$ 

Assume furthermore that  $\mathcal{J}$  is a P-ideal and *I* does not have the  $\mathcal{J}$ -covering property. Then there is an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  of *G* such that  $\limsup_{n\in S} A_n \in I$  for each  $S \in \mathcal{J}$ .

### Assume I is translation invariant...

#### Theorem

Assume *G* is a Polish group,  $D \subseteq G$  is countable and dense, *I* is a translation invariant ccc  $\sigma$ -ideal on *G* fulfilling the condition

 $\forall X \in Borel(G) \setminus I D + X \in I^*.$ 

Assume furthermore that  $\mathcal{J}$  is a P-ideal and *I* does not have the  $\mathcal{J}$ -covering property. Then there is an infinite-fold Borel cover  $(A_n)_{n\in\omega}$  of *G* such that  $\limsup_{n\in S} A_n \in I$  for each  $S \in \mathcal{J}$ .

#### Remark

 $\mathcal{M}, \mathcal{N}, \mathcal{M} \otimes \mathcal{N}$  and  $\mathcal{N} \otimes \mathcal{M}$  satisfy the conditions of the theorem with any countable dense subsets of  $\mathbb{R}$  (resp.  $\mathbb{R}^2$ ).

## Thank you!